Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR) (to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at

<u>http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml)</u>

Water System Name: VENTURA RIVER WATER DISTRICT Water System Number: 5610022

The water system above hereby certifies that its Consumer Confidence Report was distributed on <u>June 22, 2020</u> (date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified By:	Name	Bert J. Rapp		
	Signature			
	Title	General Manager		
	Phone Number	(805) 646-3403	Date	June 22, 2020

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

"Goo meth	d faith" efforts were used to reach non-bill paying customers. Those efforts included the following ods:
X	Posted the CCR on the internet at http://www.VenturaRiverWD.com/Reports
	Mailed the CCR to postal patrons within the service area (attach zip codes used)
	Advertised the availability of the CCR in news media (attach a copy of press release)
	Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published)
	Posted the CCR in public places (attach a list of locations)
	_ Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools
	_ Delivery to community organizations (attach a list of organizations)
Х	Other (attach a list of other methods used) Notified every customer using a message on the water bills & provided link to CCR on the website.
For s	systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site
	a fallowing address, http://

2019 Consumer Confidence Report

Water System Name: VENTURA RIVER WATER DISTRICT

Report Date:

May 2020

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2019.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, this Sources Well 01 and Well 02 are Groundwater. This Assessment was done using the Default Groundwater System Method. The source of Well 03, Well 04 and Well 07 are groundwater.

Please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 5 source(s): Well 01 (1989), Well 02, Well 03 - Active, Well 04 (2007) and Well 07 (New) and from 1 treated location(s): Baldwin Tank #2 - NO3 BLEND

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled Water District Board meetings held on the third Wednesday of the month at 3:00 p.m. at 409 Old Baldwin Road.

For more information about this report, or any questions relating to your drinking water, please call 8056463403 and ask for Bert Rapp or email <u>Bert@VenturaRiverWD.com</u> or visit our website at <u>www.VenturaRiverWD.com</u>.

TERMS USED IN THIS REPORT								
Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking	Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.							
water.	the level of a contaminant in drinking water.							
Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).	Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.							
Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California	Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.							
Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial	Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.							
contaminants.	ND: not detectable at testing limit							
Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant	mg/L: milligrams per liter or parts per million (ppm)							
below which there is no known or expected risk to	ug/L: micrograms per liter or parts per billion (ppb)							
disinfectants to control microbial contaminants.	pCi/L: picocuries per liter (a measure of radiation)							
Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along	NTU: Nephelometric Turbidity Units							
with their monitoring and reporting requirements, and water treatment requirements.	umhos/cm: micro mhos per centimeter							

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6, 7 and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER										
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant				
Copper (mg/L)	20 (2019)	0.22	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				

Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant			
Sodium (mg/L)	(2014 - 2017)	44	38 - 49	none	none	Salt present in the water and is generally naturally occurring			
Hardness (mg/L)	(2014 - 2017)	396	371 - 419	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring			

Table 3 - DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant				
Aluminum (mg/L)	(2014 - 2017)	ND	ND - 0.06	1	0.6	Erosion of natural deposits; residue from some surface water treatment processes				
Fluoride (mg/L)	(2014 - 2017)	0.4	ND - 0.5	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.				

Nitrate as N (mg/L)	(2014 - 2019)	2.2	1.2 - 2.9	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2014 - 2017)	2.1	1.2 - 4.2	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2011 - 2019)	1.501	ND - 3.43	15	(0)	Erosion of natural deposits.

Table 4 - TREATED DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant			
Nitrate as N (mg/L)	(2019)	2	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits			

Table 5 - DETECTION OF CONTAMINANTS WITH A SECONDARY DRINKING WATER STANDARD											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant					
Chloride (mg/L)	(2014 - 2017)	44	28 - 57	500	n/a	Runoff/leaching from natural deposits; seawater influence					
Iron (ug/L)	(2014 - 2017)	ND	ND - 100	300	n/a	Leaching from natural deposits; Industrial wastes					
Specific Conductance (umhos/cm)	(2014 - 2017)	959	888 - 1020	1600	n/a	Substances that form ions when in water; seawater influence					
Sulfate (mg/L)	(2014 - 2017)	216	177 - 241	500	n/a	Runoff/leaching from natural deposits; industrial wastes					
Total Dissolved Solids (mg/L)	(2014 - 2017)	657	590 - 720	1000	n/a	Runoff/leaching from natural deposits					
Turbidity (NTU)	(2014 - 2017)	0.7	ND - 1.3	5	n/a	Soil runoff					

Table 6 - DETECTION OF UNREGULATED CONTAMINANTS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant				
Boron (mg/L)	(2014 - 2017)	0.6	0.5 - 0.7	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.				

Table 7 - ADDITIONAL DETECTIONS											
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant						
Calcium (mg/L)	(2014 - 2017)	111	106 - 116	n/a	n/a						
Magnesium (mg/L)	(2014 - 2017)	29	26 - 32	n/a	n/a						
pH (units)	(2014 - 2017)	7.4	6.7 - 7.8	n/a	n/a						
Alkalinity (mg/L)	(2014 - 2017)	218	180 - 260	n/a	n/a						
Aggressiveness Index	(2014 - 2017)	12.2	11.5 - 12.6	n/a	n/a						
Langelier Index	(2014 - 2017)	0.33	-0.4 - 0.8	n/a	n/a						

Table 8 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant			
Total Trihalomethanes (TTHMs) (ug/L)	(2019)	75	4 - 95	80	n/a	No	By-product of drinking water disinfection			
Chlorine (mg/L)	(2019)	2.84	0.3 - 3.5	4.0	4.0	No	Drinking water disinfectant added for treatment.			
Haloacetic Acids (five) (ug/L)	(2019)	60.25	1 - 95	60	n/a	Yes	By-product of drinking water disinfection			

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Ventura River Water District* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION C	OF A MCL,MRDL,AL,TT, OR N	IONITORING A	ND REPORTING	REQUIREMENT
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language
Lead				Infants and children who drink water containing lead in excess of the action level may experience delays in their physical or mental development. Children may show slight deficits in attention span and learning abilities. Adults who drink this water over many years may develop kidney problems or high blood pressure.

Total Trihalomethanes (TTHMs)		Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience liver, kidney, or central nervous system problems, and may have an increased risk of getting cancer.
Haloacetic Acids (five)		Some people who drink water containing halocetic acids in excess of the MCL over many years may have an increased risk of getting cancer.

2019 Consumer Confidence Report Drinking Water Assessment Information

Assessment Information

VRWD has five active groundwater wells as its groundwater sources. The active wells are Wells 1, 2, 3, 4 and 7. There are no sewer lines or sewage disposal facilities located within 50 and 100 feet of well sites, respectively. The five well sites are fenced for security. The wells are located about 700 feet from an active stream (when water is flowing). VRWD conducted the drinking water source assessment of its active wells. Well 1 and 2' s assessments was completed back in August 2001; Well 4' s assessment was completed in March 2007.

Well 01 (1989)	 -) - Moderate physical barrier effectiveness. Possible Contaminating Activities (top ranked): Sewer collection systems; animal grazing; low density septic systems, agricultural drainage; agricultural wells; NPDES/WDR permitted discharges; historic waste dumps/ landfills; storm drain discharge; storm water detention facility, roads and freeways; surface water
Well 02	 Low physical barrier effectiveness. Possible Contaminating Activities (top ranked): Sewer collection systems; utility stations; green waste transfer station; animal grazing; high and low density septic systems, agricultural drainage; agricultural wells; irrigated crops; NPDES/WDR permitted discharges; historic gas stations; historic waste dumps/ landfills; abandoned wells; storm drain discharge; storm water detention facility; roads and freeways; surface water
Well 03 - Active	physical barrier effectiveness. Possible Contaminating Activities (top ranked): Septic systems
Well 04 (2007)	 - Moderate physical barrier effectiveness. Possible Contaminating Activities (top ranked): Sewer collection systems; green waste processing; high and low density septic systems; animal grazing; agricultural drainage; agricultural wells; fertilizer, pesticide/ herbicide application; NPDES/WDR permitted discharges; historic gas stations and waste dumps/ landfills; underground storage tanks; storm drain discharge; storm water detention facility; surface water
Well 07 (New)	 Moderate physical barrier effectiveness. Possible Contaminating Activities (top ranked): Sewer collection systems; animal grazing; low density septic systems, agricultural drainage; agricultural wells; NPDES/WDR permitted discharges; historic waste dumps/ landfills; storm drain discharge; storm water detention facility, roads and freeways; surface water

Discussion of Vulnerability

Well 1

The well was constructed in 1989 with a depth of 242 feet. An 8- inch sewer line is located about 60 feet west/northwest of the well and a single family residence' s septic system is located about 120 feet east of the well. The well site is within the Ventura River flood zone. The well is located over 150 feet from the river and therefore not subject to the SWTR requirements. The well is housed in a concrete block building. It has a 55 feet deep annular seal and a concrete surface seal. The well is equipped with a 16- inch steel casing and is packed with gravel. The highest perforations are 92 feet below the ground level. There are no clay layers located above the highest perforations. The well has a deep water turbine pump which is powered by an electrical motor. The well's air release valve is screened. Well 1 is the primary well and the only one pumping currently.

Well 3

The well was constructed in 1969 with a depth of 220 feet. It is housed in a metal building in a fenced site behind an office yard. The well is equipped with a 16- inch steel casing and packed with gravel. It is surface sealed and has an annular depth of 50 feet. The perforations begin at 70 feet below surface. The well's geological formation is a mix of rock and clay from the ground surface down to the highest perforations. VRWD screened the well's air release valve during the Sanitary Survey. The well will be shut down for the rest of this year (last used in July).

Well 4

The well was constructed in 2007 with a depth of 250 feet. It is located in the Ventura River flood zone, but the flow in the river is over 150 feet away and therefore the well is not subjected to the SWTR requirements. An 8- inch sanitary sewer line runs about 125 feet from the well. A 16- inch 304 Stainless Steel casing was installed for the well. A cement grout annular seal was constructed from the surface to 50 feet below the ground surface. The well has a concrete surface seal. The well is housed in a concrete block building. The highest perforation is 73 feet deep and extends down to the 120 feet. The well's air release valve is screened. The well has been offline since 2013. VRWD shall sample the well for nitrate and bacteriological activities before putting it back into service. VRWD shall also complete the Title 22 chemical testing of the well water prior to providing it to customers.

Acquiring Information

A copy of the complete assessment may be viewed at: www.VenturaRiverWD.com/Reports SWRCB Division of Drinking Water District Office 1180 Eugenia Place Suite 200 Carpinteria, CA 930135

You may request a summary of the assessment be sent to you by contacting: Jeff Densmore District Engineer (805) 566-1326 jeff.densmore@cdph.ca.gov

A copy of the report can also be downloaded at: http://venturariverwd.com/news-and-events/

					Casit Water	as Mun Quality	icipal W y Summ	ater Dis/ ary 2019	strict 9 Data		
				LA	VE CASITAS	TDEATED W	ATED		In the second		
		PHG, (MCLG)		LA	IKE CASITAS	IREATED WA	AIEK		Lake or	Mira Monte	-
TURBIDITY	MCL or [MRDL] Treatment technique (TT)	[MRDLG]		AVERAGE			RANGE		Distribution System	Well	SOURCE OF CONSTITUENT
Filter Effluent Turbidity	1 NITH	NA	Lia	hort Value =	0.16		0.01.0.16		2010	NA	
(NTU) ^a	95 % < 0.2 NTU	NA	ing	100% of 1	turbidity meas	surements we	re < 0.2 NTU		2019	NA	Soil run-off
			100	0% = lowest	monthly % of DISTRIBUT	samples meet FION SYSTEM	ting turbidity	limits	2019		
MICROBIOLOGICAL		(0)	Highest Po	ositive Samp	oles/Month		RANGE		2010	NA	
E. Coli Bacteria ^b	> 1 positive sample/month > 1 positive sample/month	(0)		1			0-1		2019	NA	Human and animal fecal waste
INORGANIC CHEMICALS			Lake Ca AVEF	<u>sitas Treate</u> AGE	d Water RANGE	Mira AVE	Monte Well	Treated RANGE			-
Barium (ppm)	1	2	0.1	13	NA	0.	13 ^g	0.10 - 0.13	2019	2019	Discharges of oil drilling wastes and from metal refineries: erosion of natural denosits
Eluorida (nnm)	2.0	1	0	4	NA	0	48	04.05	2015	2017	Freelen of natural denosites under addition which promotes strong to the discharge from fortiliner and
Fiuoriae (ppin)	2.0	1	0.	4	INA	0	.4-	0.4 - 0.5	2019	2019	aluminum factories
Nitrate as N (ppm) ^c	10	10	N	D	NA	1	1.2	0.6 - 1.7	2019	2019	Runoff and leaching from fertilizer use; leaching from tanks and sewerage; erosion from natural products
DISINFECTION BY-					DICTDIDU	TION CUCTER		I			
PRODUCTS AND DISINFECTANT RESIDUALS	RUNNING ANNUAL AVERAGE		HIGHEST	[RAA]/Loca	tional RAA	TION STSTEM	RANGE				-
Chloramines(ppm)	(RAA) [4.0]	[4.0]		[2.3]			0.1 - 3.1		2019	NA	Drinking water disinfectant added for treatment
Trihalomethanes (ppb)	80	NA		60.8			44-77		2019	NA	By-product of drinking water disinfection
Haloacetic acids (ppb)	60	NA		56.8		TADMON	10-71	FODIEAD	2019	NA	By-product of drinking water disinfection
	Pogulatory		Number of	IINL	JIVIDUAL	TAP MUN	IIIOKING	FUR LEAD	Vor		
	Action Level (RAL)	PHG	Samples Collect.	above RAL		Level Detected	l at 90th percenti	le	Tested ^d		
Lead (ppb) ^e	15	0.2	20	0			ND		2017	NA	Internal corrosion of household plumbing systems; discharges from industrial manufacturers; erosion of
uro											natural products
Copper (ppm) ^e	1.3	0.3	20	1			1.0		2017	NA	preservatives
Lead school				Number	of schools req	uesting lead s	ampling = 4		2017	NA	Internal corrosion of end-user plumbing systems; discharges from industrial manufacturers; erosion of
					SECO		ECTHETI	CETANDA	DDC		natural products
					SECC		LSINEII	C STANDA	RDS		
CONSTITUENTS	State MCL		Lake Casita AVERAGE	RANGE	Mira Mo AVERAGE	RANGE	AVERAGE	RANGE	YEAR TES Lake/Dist. Syst.	Well	SOURCE OF CONSTITUENT
Turbidity (NTU)	5	NA	0.2	NA	0.2	0.1-0.5 ^f	0.3 ^f	0.1-1.8 ^f	2019	2019	Soil run-off
Total Dissolved Solids (ppm)	1000	NA	420	NA	390	NA	NA	NA	2019	2019	Run-off / leaching from natural deposits
Specific Conductance (uS/cm)	1600	NA	679	NA	683	675-731 ^f	650 ^f	540-730 ^f	2019	2019	Substances that form ions in water; seawater influence
Chloride (ppm)	500	NA	24	NA	63	NA	NA	NA	2019	2019	Run-off/leaching from natural deposits; seawater influence
Sulfate (ppm)	500	NA	161	NA	39	NA	NA	NA	2019	2019	Run-off /leaching from natural deposits; industrial wastes
					1	ADDITION	NAL CONS	TITUENTS			
Additional Constituen	ts	PHG	Lake Casita	as Treated	Mira Mo	onte Well	Distribut	tion System	Year Tes	sted	
(Unregulated) Alkalinity	NA	(NL)	AVERAGE 140	NA	AVERAGE 160	NA	AVERAGE	KANGE	Lake/Dist. Syst.	2019	SOURCE OF CONSTITUENT
Total as CaCO3 (ppm)	6.5-8.5		140	NA	100	inn	159	157 - 164	2015	2017	A measure of the capacity to neutralize acid
pH(units) Bicarbonata Alkalinity	US EPA	NA	7.6	NA	7.3	7.1-7.3	7.5	7.3 - 8.0	2019	2019	A measure of acidity or alkalinity
HCO3 (ppm)	NA	NA	170	NA	190	NA	NA	NA	2019	2019	A measure of the capacity to neutralize acid
Corrosivity (Langlier Index) ^e	NA	NA	0.01	NA	-0.20	NA	NA	NA	2019	2019	Indicator of corrosion. A positive Langlier Index indicates the water is non-corrosive
Boron (ppb) Calcium (ppm)	NA	(1000) NA	200	NA NA	ND 53	NA	NA	NA	2019	2019	A naturally-occurring element
Magnesium (ppm)	NA	NA	26	NA	16	NA	NA	NA	2019	2019	A naturally-occurring element
Potassium (ppm)	NA	NA	4	NA	ND	NA	NA	NA	2019	2019	A naturally-occurring element
Total Hardness (ppm)	NA	NA	239 (14.0 grains/gal)	NA	198 (11.6 grains/gal)	NA	NA	NA	2019	2019	"Hardness" is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring.
Sodium (ppm)	NA	NA	30	NA	50	NA	NA	NA	2019	2019	"Sodium" refers to the salt present in the water and is generally naturally occurring.
Maximum Contaminant Level Maximum Contaminant Level Maximum Contaminant Level Maximum Residual Disinfect Maximum Residual Disinfect Notification Level: Health base NA - Not Applicable ND - None Detected NL - Notification Level NTU - Nephelometric Turbidity ppp - Parts per million, or milli ppb - Parts per million, or milli phb - Rate public, Health Annual Average Science State State State Primary Drinking Water Stane Public Health Goal (PHG): The Regulatory Action Level (RAL Secondary Drinking Water Stane Public Health Goal (PHG): The Regulatory Action Level (RAL Secondary Drinking Vater Stane Public Health Goal (PHG): The Secondary Drinking Vater State 1 Turbidity is a measure of the c and 100% is the lowest month b During 2010 Casins colleed results and further investigation Ia	(MCL): The highest level of a contaming gwater: Goal (MCLG): The level of a contaminent nt Level (MRDL): The highest level of a davisory level setablished by the S Units (a measure of turbidity) grams per liter (mg/L) grams per liter (mg/L) timeter (n measure of specific conduct dards (PDWS): MCLs and MRDL5 for level of a contaminant in drinking wa): The concentration of a contaminant mediards (SDWS): MCLs for contamin required process intended to reduce le Footnotes: loudiness of water and is a good measure by percentage of samples meeting the tur 155 samples for the colorism bacter at da to a sampt tur/site contaminated	inant that is allowed in drink mant in drinking water below of a disinfectant allowed in dri a drinking water disinfectant tate Board for chemicals in d tance). contaminants that affect heal ter below which there is no l which, if exceeded, triggers that shar affect heat starts, edor, on the level of a contaminant in e of water quality and filtratior thighty inits. Besting according to the Total C which where and the initely cause	ing water. Primary h which there is no in tinking water. There to below which there rinking water that is thalong with their taxown or expected treatment or other r appearance of the drinking water.	ACLs are set as cl nown or expected is convincing evit is no known or e ck MCLs. monitoring and r sisk to health. PH equirements wh drinking water. C of the samples te: liform bacteria an rate with the result	use to the PHGs (o I risk to health. MG dence that the add spected risk to hes eporting requirem Gs are set by the C ch a water system outraminants with net of turbidity we def Gr turbidity we def Gr turbidity we	r MCLG3) as is ecco LGs are set by the dition of a disinfect alth. MRDLGs do n alth. MRDLGs do n alth. MRDLGs do not altfornia Environn must follow. SDWSs do not affe ree below the requit ted in one sample. J ter ange, 12 ppm as	nomically and tech U.S. Environment tant is necessary fu estiment requirem mental Protection J ext the health at th red TT level of 0.2 N Repeat sampling re- nitrogen in 2019.	anologically feasible. al Protection Agency or control of microbi fits of the use of disi fits of the use of disi ents. agency. e MCL levels.	. Secondary MCLs are set to (USEPA). Ial contaminants. Infectants to control microl	o protect the	ς.
 d) The State allows us to monitor e) Casitas has implemented a construction 	r for some contaminants less than once p	er year because the concentrat	ions of these contami	nants do not chang	ge frequently. Some r levels	of our data, though	representative, are	more than one year of	ld.		
 e) Casitas has implemented a cor f) Distribution system measurem 	rosion control plan by adding a small an ents taken with field kits (not certified la	nount of phosphate to the wate aboratory results).	r to lower corrosivity	and reduce coppe	r levels.						
g) Weighted average for blending	g facility production of Lake Casitas Trea	ated and Mira Monte Well Trea	ted if additional field	monitoring is una	vailable.						

Ventura River Water District Analytical Results By FGL - 2019

		LEA	D AND C	OPPER RUI	LE				
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples
Copper		mg/L		1.3	.3			0.22	20
11078 Rodeo Dr.	SP 1907248-17	mg/L				2019-06-04	0.22		
11551 Oakcrest Ave.	SP 1907335-5	mg/L				2019-06-04	ND		
1211 Avila Dr.	SP 1907248-25	mg/L				2019-06-04	0.10		
172 Burnham Rd.	SP 1907248-20	mg/L				2019-06-04	0.19		
1918 Country PL	SP 1907335-2	mg/L				2019-06-05	ND		
1991 Country Pl.	SP 1907248-8	mg/L				2019-06-04	0.07		
2131 Burnham Rd.	SP 1907335-4	mg/L				2019-06-05	0.08		
2187 Woodland Ave.	SP 1907248-1	mg/L				2019-06-04	0.07		
2235 Los Encinos Rd.	SP 1907248-11	mg/L				2019-06-04	ND		
2256 Los Encinos Rd.	SP 1907248-10	mg/L				2019-06-04	ND		
365 Burnham Rd.	SP 1907248-9	mg/L				2019-06-04	0.13		
400 Burnham Rd.	SP 1907335-1	mg/L				2019-06-05	ND		
45 Almond Ave.	SP 1907335-3	mg/L				2019-06-05	0.05		
478 Burnham Rd.	SP 1907248-22	mg/L				2019-06-04	0.32		
56 Grapevine Rd.	SP 1907248-14	mg/L				2019-06-04	0.15		
573 E. Katherine Ave.	SP 1907248-15	mg/L				2019-06-04	0.22		
617 Country Dr.	SP 1907248-3	mg/L				2019-06-04	0.09		
710 Heather St.	SP 1907248-4	mg/L				2019-06-04	0.13		
80 Pathelen Ave.	SP 1907248-16	mg/L				2019-06-04	0.13		
98 Wormwood St.	SP 1907248-7	mg/L				2019-06-04	0.08		

	SAMPLI	NG RESU	ULTS FOR	SODIUM A	ND HAI	RDNESS			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Sodium		mg/L		none	none			44	38 - 49
Well 01 (1989)	SP 1702592-1	mg/L				2017-02-28	44		
Well 01 (1989)	SP 1701637-1	mg/L				2017-02-07	49		
Well 02	SP 1405147-1	mg/L				2014-05-06	45		
Well 03 - Active	SP 1702589-1	mg/L				2017-02-28	38		
Well 04 (2007)	SP 1702840-1	mg/L				2017-03-07	40		
Well 07 (New)	SP 1611959-1	mg/L				2016-10-07	48		
Hardness		mg/L		none	none			396	371 - 419
Well 01 (1989)	SP 1702592-1	mg/L				2017-02-28	395		
Well 01 (1989)	SP 1701637-1	mg/L				2017-02-07	403		
Well 02	SP 1405147-1	mg/L				2014-05-06	409		
Well 03 - Active	SP 1702589-1	mg/L				2017-02-28	378		
Well 04 (2007)	SP 1702840-1	mg/L				2017-03-07	371		
Well 07 (New)	SP 1611959-1	mg/L				2016-10-07	419		

	PRIMARY DRINKING WATER STANDARDS (PDWS)													
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)					
Aluminum		mg/L		1	0.6			ND	ND - 0.06					
Well 01 (1989)	SP 1701637-1	mg/L				2017-02-07	ND							
Well 02	SP 1405147-1	mg/L				2014-05-06	ND							
Well 03 - Active	SP 1702589-1	mg/L				2017-02-28	ND							
Well 04 (2007)	SP 1702840-1	mg/L				2017-03-07	ND							
Well 07 (New)	SP 1611959-1	mg/L				2016-10-07	0.06							
Fluoride	·	mg/L		2	1			0.4	ND - 0.5					
Well 01 (1989)	SP 1702592-1	mg/L				2017-02-28	0.5							
Well 01 (1989)	SP 1701637-1	mg/L				2017-02-07	0.5							
Well 02	SP 1405147-1	mg/L				2014-05-06	ND							

Well 03 - Active	SP 1702589-1	mg/L			2017-02-28	0.4		
Well 04 (2007)	SP 1702840-1	mg/L			2017-03-07	0.5		
Well 07 (New)	SP 1611959-1	mg/L			2016-10-07	0.5		
Nitrate as N		mg/L	10	10			2.2	1.15 - 2.9
Well 01 (1989)	SP 1916396-1	mg/L			2019-12-03	1.5		
Well 01 (1989)	SP 1915320-1	mg/L			2019-11-12	2.1		
Well 01 (1989)	SP 1913235-1	mg/L			2019-10-01	2.2		
Well 01 (1989)	SP 1912034-1	mg/L			2019-09-10	2.4		
Well 01 (1989)	SP 1911380-1	mg/L			2019-08-27	2.6		
Well 01 (1989)	SP 1908986-1	mg/L			2019-07-09	2.5		
Well 01 (1989)	SP 1907246-1	mg/L			2019-06-04	2.9		
Well 01 (1989)	SP 1906642-1	mg/L			2019-05-21	2.9		
Well 01 (1989)	SP 1904692-1	mg/L			2019-04-09	2.3		
Well 01 (1989)	SP 1903305-1	mg/L			2019-03-12	1.9		
Well 01 (1989)	SP 1901998-1	mg/L			2019-02-12	1.5		
Well 01 (1989)	SP 1901996-1	mg/L			2019-02-12	1.4		
Well 01 (1989)	SP 1900306-1	mg/L			2019-01-08	2.1		
Well 02	SP 1406653-1	mg/L			2014-06-10	2.60		
Well 02	SP 1405147-1	mg/L			2014-05-06	1.15		
Well 03 - Active	SP 1904031-1	mg/L			2019-03-26	2.4		
Well 04 (2007)	SP 1902984-1	mg/L			2019-03-05	1.9		
Well 07 (New)	SP 1916396-2	mg/L			2019-12-03	1.8		
Well 07 (New)	SP 1915320-2	mg/L			2019-11-12	2.2		
Well 07 (New)	SP 1913235-2	mg/L			2019-10-01	2.4		
Well 07 (New)	SP 1912034-2	mg/L			2019-09-10	2.6		
Well 07 (New)	SP 1911380-2	mg/L			2019-08-27	2.9		
Well 07 (New)	SP 1908986-2	mg/L			2019-07-09	2.7		
Well 07 (New)	SP 1907246-2	mg/L			2019-06-04	2.8		
Well 07 (New)	SP 1906642-2	mg/L			2019-05-21	2.8		
Well 07 (New)	SP 1904692-2	mg/L			2019-04-09	2.2		
Well 07 (New)	SP 1903305-2	mg/L			2019-03-12	1.7		
Well 07 (New)	SP 1901998-2	mg/L			2019-02-12	1.6		
Well 07 (New)	SP 1900306-3	mg/L			2019-01-08	1.8		
Nitrate + Nitrite as N		mg/L	10	10			2.1	1.2 - 4.2
Well 01 (1989)	SP 1702592-1	mg/L			2017-02-28	1.7		
Well 01 (1989)	SP 1701637-1	mg/L			2017-02-07	1.6		
Well 02	SP 1405147-1	mg/L			2014-05-06	1.2		
Well 03 - Active	SP 1702589-1	mg/L			2017-02-28	2.3		
Well 04 (2007)	SP 1702840-1	mg/L			2017-03-07	1.6		
Well 07 (New)	SP 1611959-1	mg/L	 		2016-10-07	4.2		
Gross Alpha	1	pCi/L	 15	(0)			1.501	ND - 3.43
Well 01 (1989)	SP 1305549-1	pCi/L			2013-06-04	1.62		
Well 01 (1989)	SP 1302830-1	pCi/L			2013-03-19	1.29		
Well 02	SP 1105600-1	pCi/L			2011-06-07	ND		
Well 02	SP 1102665-1	pCi/L			2011-03-15	ND		
Well 03 - Active	SP 1305552-1	pCi/L			2013-06-04	2.51		
Well 03 - Active	SP 1302833-1	pCi/L			2013-03-19	1.27		
Well 04 (2007)	SP 1902985-1	pCi/L			2019-03-05	1.89		
Well 07 (New)	SP 1611959-1	pCi/L			2016-10-07	3.43		

TREATED PRIMARY DRINKING WATER STANDARDS (PDWS)											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Nitrate as N		mg/L		10	10			2.0	2.0 - 2.0		
aldwin Tank #2 - NO3 BLEND SP 1900306-4 mg/L 2019-01-08 2.0											

SECONDARY DRINKING WATER STANDARDS (SDWS)									
UnitsMCLGCA-MCLPHGSampledResultAvg. Result(a)Range (b)									
Chloride	mg/L		500	n/a			44	28 - 57	

Well 01 (1989)	SP 1702592-1	mg/L			2017-02-28	47		
Well 01 (1989)	SP 1701637-1	mg/L			2017-02-07	53		
Well 02	SP 1405147-1	mg/L			2014-05-06	41		
Well 03 - Active	SP 1702589-1	mg/L			2017-02-28	28		
Well 04 (2007)	SP 1702840-1	mg/L			2017-03-07	40		
Well 07 (New)	SP 1611959-1	mg/L			2016-10-07	57		
Iron		ug/L	300	n/a			ND	ND - 100
Well 01 (1989)	SP 1702592-1	ug/L			2017-02-28	ND		
Well 01 (1989)	SP 1701637-1	ug/L			2017-02-07	ND		
Well 02	SP 1405147-1	ug/L			2014-05-06	100		
Well 03 - Active	SP 1702589-1	ug/L			2017-02-28	ND		
Well 04 (2007)	SP 1702840-1	ug/L			2017-03-07	ND		
Well 07 (New)	SP 1611959-1	ug/L			2016-10-07	ND		
Specific Conductance		umhos/cm	1600	n/a			959	888 - 1020
Well 01 (1989)	SP 1702592-1	umhos/cm			2017-02-28	1000		
Well 01 (1989)	SP 1701637-1	umhos/cm			2017-02-07	1000		
Well 02	SP 1405147-1	umhos/cm			2014-05-06	914		
Well 03 - Active	SP 1702589-1	umhos/cm			2017-02-28	888		
Well 04 (2007)	SP 1702840-1	umhos/cm			2017-03-07	932		
Well 07 (New)	SP 1611959-1	umhos/cm			2016-10-07	1020		
Sulfate		mg/L	500	n/a			216	177 - 241
Well 01 (1989)	SP 1702592-1	mg/L			2017-02-28	225		
Well 01 (1989)	SP 1701637-1	mg/L			2017-02-07	218		
Well 02	SP 1405147-1	mg/L			2014-05-06	241		
Well 03 - Active	SP 1702589-1	mg/L			2017-02-28	177		
Well 04 (2007)	SP 1702840-1	mg/L			2017-03-07	224		
Well 07 (New)	SP 1611959-1	mg/L			2016-10-07	209		
Total Dissolved Solids		mg/L	1000	n/a			657	590 - 720
Well 01 (1989)	SP 1702592-1	mg/L			2017-02-28	660		
Well 01 (1989)	SP 1701637-1	mg/L			2017-02-07	690		
Well 02	SP 1405147-1	mg/L			2014-05-06	630		
Well 03 - Active	SP 1702589-1	mg/L			2017-02-28	590		
Well 04 (2007)	SP 1702840-1	mg/L			2017-03-07	650		
Well 07 (New)	SP 1611959-1	mg/L			2016-10-07	720		
Turbidity		NTU	5	n/a			0.7	ND - 1.3
Well 01 (1989)	SP 1701637-1	NTU			2017-02-07	0.8		
Well 02	SP 1405147-1	NTU			2014-05-06	ND		
Well 03 - Active	SP 1702589-1	NTU			2017-02-28	0.5		
Well 04 (2007)	SP 1702840-1	NTU			2017-03-07	1.3		
Well 07 (New)	SP 1611959-1	NTU			2016-10-07	0.7		

	UNREGULATED CONTAMINANTS													
UnitsMCLGCA-MCLPHGSampledResultAvg. Result(a)Range (b)														
Boron		mg/L		NS	n/a			0.6	0.5 - 0.7					
Well 01 (1989)	SP 1702592-1	mg/L				2017-02-28	0.6							
Well 01 (1989)	SP 1701637-1	mg/L				2017-02-07	0.7							
Well 02	SP 1405147-1	mg/L				2014-05-06	0.6							
Well 03 - Active	SP 1702589-1	mg/L				2017-02-28	0.5							
Well 04 (2007)	SP 1702840-1	mg/L				2017-03-07	0.6							
Well 07 (New)	SP 1611959-1	mg/L				2016-10-07	0.5							

ADDITIONAL DETECTIONS										
			MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Calcium		mg/L			n/a			111	106 - 116	
Well 01 (1989)	SP 1702592-1	mg/L				2017-02-28	112			
Well 01 (1989)	SP 1701637-1	mg/L				2017-02-07	112			
Well 02	SP 1405147-1	mg/L				2014-05-06	116			
Well 03 - Active	SP 1702589-1	mg/L				2017-02-28	107			

Well 04 (2007)	SP 1702840-1	mg/L			2017-03-07	106		
Well 07 (New)	SP 1611959-1	mg/L			2016-10-07	115		
Magnesium				n/a			29	26 - 32
Well 01 (1989)	SP 1702592-1	mg/L			2017-02-28	28		
Well 01 (1989)	SP 1701637-1	mg/L			2017-02-07	30		
Well 02	SP 1405147-1	mg/L			2014-05-06	29		
Well 03 - Active	SP 1702589-1	mg/L			2017-02-28	27		
Well 04 (2007)	SP 1702840-1	mg/L			2017-03-07	26		
Well 07 (New)	SP 1611959-1	mg/L			2016-10-07	32		
pH	•	units		n/a			7.4	6.7 - 7.8
Well 01 (1989)	SP 1702592-1	units			2017-02-28	7.8		
Well 01 (1989)	SP 1701637-1	units			2017-02-07	7.2		
Well 02	SP 1405147-1	units			2014-05-06	7.7		
Well 03 - Active	SP 1702589-1	units			2017-02-28	7.8		
Well 04 (2007)	SP 1702840-1	units			2017-03-07	7.4		
Well 07 (New)	SP 1611959-1	units			2016-10-07	6.7		
Alkalinity		mg/L		n/a			218	180 - 260
Well 01 (1989)	SP 1702592-1	mg/L			2017-02-28	220		
Well 01 (1989)	SP 1701637-1	mg/L			2017-02-07	210		
Well 02	SP 1405147-1	mg/L			2014-05-06	180		
Well 03 - Active	SP 1702589-1	mg/L			2017-02-28	260		
Well 04 (2007)	SP 1702840-1	mg/L			2017-03-07	210		
Well 07 (New)	SP 1611959-1	mg/L			2016-10-07	230		
Aggressiveness Index	-			n/a			12.2	11.5 - 12.6
Well 01 (1989)	SP 1702592-1				2017-02-28	12.6		
Well 01 (1989)	SP 1701637-1				2017-02-07	12.0		
Well 02	SP 1405147-1				2014-05-06	12.4		
Well 03 - Active	SP 1702589-1				2017-02-28	12.6		
Well 04 (2007)	SP 1702840-1				2017-03-07	12.1		
Well 07 (New)	SP 1611959-1				2016-10-07	11.5		
Langelier Index				n/a			0.33	-0.4 - 0.8
Well 01 (1989)	SP 1702592-1				2017-02-28	0.7		
Well 01 (1989)	SP 1701637-1				2017-02-07	0.08		
Well 02	SP 1405147-1				2014-05-06	0.5		
Well 03 - Active	SP 1702589-1				2017-02-28	0.8		
Well 04 (2007)	SP 1702840-1				2017-03-07	0.3		
Well 07 (New)	SP 1611959-1				2016-10-07	-0.4		

DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE									
			MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Total Trihalomethanes (TTHMs)		ug/L		80	n/a			75	4 - 95
175 Rio Via - Stage 2 DBP	SP 1916799-1	ug/L				2019-12-10	95		
175 Rio Via - Stage 2 DBP	SP 1911649-1	ug/L				2019-09-03	55		
175 Rio Via - Stage 2 DBP	SP 1908013-1	ug/L				2019-06-18	62		
175 Rio Via - Stage 2 DBP	SP 1903633-1	ug/L				2019-03-19	86		
Average 175 Rio Via - Stage 2 DBP								74.5	
202 Valle Rio - Stage 2 DBP	SP 1916799-2	ug/L				2019-12-10	4		
202 Valle Rio - Stage 2 DBP	SP 1911649-2	ug/L				2019-09-03	11		
202 Valle Rio - Stage 2 DBP	SP 1908013-2	ug/L				2019-06-18	11		
202 Valle Rio - Stage 2 DBP	SP 1903633-2	ug/L				2019-03-19	9		
Average 202 Valle Rio - Stage 2 DBP								8.75	
Chlorine		mg/L		4.0	4.0			2.84	0.3 - 3.5
175 Rio Via	SP 1912441-1	mg/L				2019-09-17	0.3		
175 Rio Via	SP 1908729-1	mg/L				2019-07-02	2.0		
175 Rio Via	SP 1905058-1	mg/L				2019-04-16	2.5		
175 Rio Via	SP 1903306-1	mg/L				2019-03-12	2.0		
Average 175 Rio Via								1.7	
175 RIO VIA - STAGE 2 DBP	SP 1916397-1	mg/L				2019-12-03	2.0		

175 RIO VIA - STAGE 2 DBP	SP 1914376-1	mg/L			2019-10-22	3.0		
175 RIO VIA - STAGE 2 DBP	SP 1910620-1	mg/L			2019-08-12	2.5		
175 RIO VIA - STAGE 2 DBP	SP 1906880-1	mg/L			2019-05-28	2.3		
175 RIO VIA - STAGE 2 DBP	SP 1901589-1	mg/L			2019-02-05	2.0		
Average 175 RIO VIA - STAGE 2 DBP							2.36	
202 VALLE RIO - STAGE 2 DBP	SP 1904352-2	mg/L			2019-04-02	2.5		
Average 202 VALLE RIO - STAGE 2 DBP							2.5	
72 W. Catalina Dr.	SP 1907247-2	mg/L			2019-06-04	1.0		
Average 72 W. Catalina Dr.							1	
85 Almond Ave.	SP 1907247-1	mg/L			2019-06-04	.8		
Average 85 Almond Ave.							0.8	
9148 Nye Rd	SP 1915322-1	mg/L			2019-11-12	2.8		
Average 9148 Nye Rd							2.8	
9148 Nye Rd Book 14	SP 1917203-1	mg/L			2019-12-17	2.8		
9148 Nye Rd Book 14	SP 1913236-1	mg/L			2019-10-01	2.5		
9148 Nye Rd Book 14	SP 1911379-1	mg/L			2019-08-27	3.5		
9148 Nye Rd Book 14	SP 1909330-1	mg/L			2019-07-16	2.5		
9148 Nye Rd Book 14	SP 1907580-1	mg/L			2019-06-11	3.0		
9148 Nye Rd Book 14	SP 1906008-1	mg/L			2019-05-07	2.5		
9148 Nye Rd Book 14	SP 1904032-1	mg/L			2019-03-26	2.8		
9148 Nye Rd Book 14	SP 1902285-1	mg/L			2019-02-19	2.5		
9148 Nye Rd Book 14	SP 1900305-1	mg/L			2019-01-08	3.5		
Average 9148 Nye Rd Book 14							2.84	
Haloacetic Acids (five)	_	ug/L	60	n/a			60.25	1 - 95
175 Rio Via - Stage 2 DBP	SP 1916799-1	ug/L			2019-12-10	95		
175 Rio Via - Stage 2 DBP	SP 1911649-1	ug/L			2019-09-03	38		
175 Rio Via - Stage 2 DBP	SP 1908013-1	ug/L			2019-06-18	51		
175 Rio Via - Stage 2 DBP	SP 1903633-1	ug/L			2019-03-19	57		
Average 175 Rio Via - Stage 2 DBP							60.25	
202 Valle Rio - Stage 2 DBP	SP 1911649-2	ug/L			2019-09-03	1		
202 Valle Rio - Stage 2 DBP	SP 1908013-2	ug/L			2019-06-18	3		
202 Valle Rio - Stage 2 DBP	SP 1903633-2	ug/L			2019-03-19	2		
Average 202 Valle Rio - Stage 2 DBP							2	

Ventura River Water District CCR Login Linkage - 2019

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
1092 Moreno Dr	SP 1902658-1	2019-02-26	Coliform	1092 Moreno Dr	Week 4 System Monitoring
	SP 1904352-1	2019-04-02	Coliform	1092 Moreno Dr	Week 1 System Monitoring
1092MORENO	SP 1906328-1	2019-05-14	Coliform	1092 Moreno Dr	Week 2 System Monitoring
	SP 1908014-1	2019-06-18	Coliform	1092 Moreno Dr	Week 3 System Monitoring
	SP 1909687-1	2019-07-23	Coliform	1092 Moreno Dr	Week 4 System Monitoring
	SP 1911648-1	2019-09-03	Coliform	1092 Moreno Dr	Week 1 System Monitoring
	SP 1913659-1	2019-10-08	Coliform	1092 Moreno Dr	Week 2 System Monitoring
	SP 1915736-1	2019-11-19	Coliform	1092 Moreno Dr	Week 3 System Monitoring
	SP 1917507-1	2019-12-23	Coliform	1092 Moreno Dr	Week 4 System Monitoring
1092 Morroo Dr	SP 1900631-1	2019-01-15	Coliform	1092 Morroo Dr	Week 3 System Monitoring
11078 Rodeo Dr.	SP 1907248-17	2019-06-04	Metals, Total	11078 Rodeo Dr.	Lead & Copper Monitoring
11551 Oakcrest	SP 1907335-5	2019-06-04	Metals, Total	11551 Oakcrest Ave.	Lead & Copper Monitoring
1211 Avila Dr.	SP 1907248-25	2019-06-04	Metals, Total	1211 Avila Dr.	Lead & Copper Monitoring
172 Burnham Rd.	SP 1907248-20	2019-06-04	Metals, Total	172 Burnham Rd.	Lead & Copper Monitoring
SS - Wk4	SP 1903306-1	2019-03-12	Coliform	175 Rio Via	Week 2 System Monitoring
	SP 1903306-1	2019-03-12	Field Test	175 Rio Via	Week 2 System Monitoring
	SP 1905058-1	2019-04-16	Coliform	175 Rio Via	Week 3 System Monitoring
	SP 1905058-1	2019-04-16	Field Test	175 Rio Via	Week 3 System Monitoring
	SP 1908729-1	2019-07-02	Field Test	175 Rio Via	Week 1 System Monitoring
	SP 1908729-1	2019-07-02	Coliform	175 Rio Via	Week 1 System Monitoring
	SP 1912441-1	2019-09-17	Coliform	175 Rio Via	Week 3 System Monitoring
	SP 1912441-1	2019-09-17	Field Test	175 Rio Via	Week 3 System Monitoring
DBP 175RioVia	SP 1901589-1	2019-02-05	Coliform	175 RIO VIA - STAGE 2 DBP	Week 1 System Monitoring
	SP 1901589-1	2019-02-05	Field Test	175 RIO VIA - STAGE 2 DBP	Week 1 System Monitoring
	SP 1903633-1	2019-03-19	EPA 551.1	175 Rio Via - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1903633-1	2019-03-19	EPA 552.2	175 Rio Via - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1906880-1	2019-05-28	Coliform	175 RIO VIA - STAGE 2 DBP	Week 4 System Monitoring
	SP 1906880-1	2019-05-28	Field Test	175 RIO VIA - STAGE 2 DBP	Week 4 System Monitoring
	SP 1908013-1	2019-06-18	EPA 552.2	175 Rio Via - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1908013-1	2019-06-18	EPA 551.1	175 Rio Via - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1910620-1	2019-08-12	Field Test	175 RIO VIA - STAGE 2 DBP	Week 2 System Monitoring
	SP 1910620-1	2019-08-12	Coliform	175 RIO VIA - STAGE 2 DBP	Week 2 System Monitoring
	SP 1911649-1	2019-09-03	EPA 551.1	175 Rio Via - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1911649-1	2019-09-03	EPA 552.2	175 Rio Via - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1914376-1	2019-10-22	Coliform	175 RIO VIA - STAGE 2 DBP	Week 4 System Monitoring
	SP 1914376-1	2019-10-22	Field Test	175 RIO VIA - STAGE 2 DBP	Week 4 System Monitoring
	SP 1916397-1	2019-12-03	Coliform	175 RIO VIA - STAGE 2 DBP	Week 1 System Monitoring
	SP 1916397-1	2019-12-03	Field Test	175 RIO VIA - STAGE 2 DBP	Week 1 System Monitoring
	SP 1916799-1	2019-12-10	EPA 551.1	175 Rio Via - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1916799-1	2019-12-10	EPA 552.2	175 Rio Via - Stage 2 DBP	Stage 2 DBP Site Monitoring
1918 Country PL	SP 1907335-2	2019-06-05	Metals, Total	1918 Country PL	Lead & Copper Monitoring
1991 Country Pl	SP 1907248-8	2019-06-04	Metals, Total	1991 Country Pl.	Lead & Copper Monitoring
DBP 202ValleRio	SP 1903633-2	2019-03-19	EPA 551.1	202 Valle Rio - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1903633-2	2019-03-19	EPA 552.2	202 Valle Rio - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1904352-2	2019-04-02	Coliform	202 VALLE RIO - STAGE 2 DBP	Week 1 System Monitoring
	SP 1904352-2	2019-04-02	Field Test	202 VALLE RIO - STAGE 2 DBP	Week 1 System Monitoring
	SP 1908013-2	2019-06-18	EPA 551.1	202 Valle Rio - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1908014-2	2019-06-18	Coliform	202 VALLE RIO - STAGE 2 DBP	Week 3 System Monitoring
	SP 1908013-2	2019-06-18	EPA 552.2	202 Valle Rio - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1909687-2	2019-07-23	Coliform	202 VALLE RIO - STAGE 2 DBP	Week 4 System Monitoring
	SP 1911649-2	2019-09-03	EPA 552.2	202 Valle Rio - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1911648-2	2019-09-03	Coliform	202 VALLE RIO - STAGE 2 DBP	Week 1 System Monitoring
	SP 1911649-2	2019-09-03	EPA 551.1	202 Valle Rio - Stage 2 DBP	Stage 2 DBP Site Monitoring
	SP 1913659-2	2019-10-08	Coliform	202 VALLE RIO - STAGE 2 DBP	Week 2 System Monitoring
	SP 1915736-2	2019-11-19	Coliform	202 VALLE RIO - STAGE 2 DBP	Week 3 System Monitoring

	SP 1916799-2	2019-12-10	EPA 551.1	202 Valle Rio - Stage 2 DBP	Stage 2 DBP Site Monitoring
SS - 10A	SP 1900631-2	2019-01-15	Coliform	202 Valle Rio Ave Book 10A	Week 3 System Monitoring
	SP 1902658-2	2019-02-26	Coliform	202 Valle Rio Ave Book 10A	Week 4 System Monitoring
	SP 1906328-2	2019-05-14	Coliform	202 Valle Rio Ave Book 10A	Week 2 System Monitoring
	SP 1917507-2	2019-12-23	Coliform	202 Valle Rio Ave Book 10A	Week 4 System Monitoring
SS - 9B	SP 1901014-1	2019-01-22	Coliform	2096 Sumac Dr Book 9B	Week 4 System Monitoring
	SP 1902986-1	2019-03-05	Coliform	2096 Sumac Dr Book 9B	Week 1 System Monitoring
	SP 1904691-1	2019-04-09	Coliform	2096 Sumac Dr Book 9B	Week 2 System Monitoring
	SP 1906641-1	2019-05-21	Coliform	2096 Sumac Dr Book 9B	Week 3 System Monitoring
	SP 1908376-1	2019-06-25	Coliform	2096 Sumac Dr Book 9B	Week 4 System Monitoring
	SP 1910264-1	2019-08-06	Coliform	2096 Sumac Dr Book 9B	Week 1 System Monitoring
	SP 1912033-1	2019-09-10	Coliform	2096 Sumac Dr Book 9B	Week 2 System Monitoring
	SP 1914015-1	2019-10-15	Coliform	2096 Sumac Dr Book 9B	Week 3 System Monitoring
	SP 1916111-1	2019-11-26	Coliform	2096 Sumac Dr Book 9B	Week 4 System Monitoring
2131 Burnham Rd	SP 1907335-4	2019-06-05	Metals, Total	2131 Burnham Rd.	Lead & Copper Monitoring
2187 Woodland A	SP 1907248-1	2019-06-04	Metals, Total	2187 Woodland Ave.	Lead & Copper Monitoring
2235 Los Encino	SP 1907248-11	2019-06-04	Metals, Total	2235 Los Encinos Rd.	Lead & Copper Monitoring
2256 Los Encino	SP 1907248-10	2019-06-04	Metals, Total	2256 Los Encinos Rd.	Lead & Copper Monitoring
SS - 9A	SP 1905058-2	2019-04-16	Coliform	265 E. Villanova Rd.	Week 3 System Monitoring
265 E. Villanov	SP 1908729-2	2019-07-02	Coliform	265 E. Villanova Rd.	Week 1 System Monitoring
SS - 9A	SP 1901589-2	2019-02-05	Coliform	265 E. Villanova Rd. Book 9A	Week 1 System Monitoring
	SP 1903306-2	2019-03-12	Coliform	265 E. Villanova Rd. Book 9A	Week 2 System Monitoring
	SP 1906880-2	2019-05-28	Coliform	265 E. Villanova Rd. Book 9A	Week 4 System Monitoring
	SP 1910620-2	2019-08-12	Coliform	265 E. Villanova Rd. Book 9A	Week 2 System Monitoring
	SP 1912441-2	2019-09-17	Coliform	265 E. Villanova Rd. Book 9A	Week 3 System Monitoring
	SP 1914376-2	2019-10-22	Coliform	265 E. Villanova Rd. Book 9A	Week 4 System Monitoring
	SP 1916397-2	2019-12-03	Coliform	265 E. Villanova Rd. Book 9A	Week 1 System Monitoring
290 Alto Dr	SP 1915322-2	2019-11-12	Coliform	290 Alto Dr	Week 2 System Monitoring
SS - 8	SP 1900305-2	2019-01-08	Coliform	290 Alto Dr Book 8	Week 2 System Monitoring
	SP 1902285-2	2019-02-19	Coliform	290 Alto Dr Book 8	Week 3 System Monitoring
	SP 1904032-2	2019-03-26	Coliform	290 Alto Dr Book 8	Week 4 System Monitoring
	SP 1906008-2	2019-05-07	Coliform	290 Alto Dr Book 8	Week 1 System Monitoring
	SP 1907580-2	2019-06-11	Coliform	290 Alto Dr Book 8	Week 2 System Monitoring
	SP 1909330-2	2019-07-16	Coliform	290 Alto Dr Book 8	Week 3 System Monitoring
	SP 1911379-2	2019-08-27	Coliform	290 Alto Dr Book 8	Week 4 System Monitoring
	SP 1913236-2	2019-10-01	Coliform	290 Alto Dr Book 8	Week 1 System Monitoring
	SP 1917203-2	2019-12-17	Coliform	290 Alto Dr Book 8	Week 3 System Monitoring
365 Burnham Rd.	SP 1907248-9	2019-06-04	Metals, Total	365 Burnham Rd.	Lead & Copper Monitoring
400 Burnham Rd.	SP 1907335-1	2019-06-05	Metals, Total	400 Burnham Rd.	Lead & Copper Monitoring
45 Almond Ave.	SP 1907335-3	2019-06-05	Metals, Total	45 Almond Ave.	Lead & Copper Monitoring
478 Burnham Rd.	SP 1907248-22	2019-06-04	Metals, Total	478 Burnham Rd.	Lead & Copper Monitoring
56 Grapevine Rd	SP 1907248-14	2019-06-04	Metals, Total	56 Grapevine Rd.	Lead & Copper Monitoring
573 E. Katherin	SP 1907248-15	2019-06-04	Metals, Total	573 E. Katherine Ave.	Lead & Copper Monitoring
SS - 7	SP 1901014-2	2019-01-22	Coliform	595 Riverside Rd Book 7	Week 4 System Monitoring
	SP 1902986-2	2019-03-05	Coliform	595 Riverside Rd Book 7	Week 1 System Monitoring
	SP 1904691-2	2019-04-09	Coliform	595 Riverside Rd Book 7	Week 2 System Monitoring
	SP 1906641-2	2019-05-21	Coliform	595 Riverside Rd Book 7	Week 3 System Monitoring
	SP 1908376-2	2019-06-25	Coliform	595 Riverside Rd Book 7	Week 4 System Monitoring
	SP 1910264-2	2019-08-06	Coliform	595 Riverside Rd Book 7	Week 1 System Monitoring
	SP 1912033-2	2019-09-10	Coliform	595 Riverside Rd Book 7	Week 2 System Monitoring
	SP 1914015-2	2019-10-15	Coliform	595 Riverside Rd Book 7	Week 3 System Monitoring
	SP 1916111-2	2019-11-26	Coliform	595 Riverside Rd Book 7	Week 4 System Monitoring
617 Country Dr.	SP 1907248-3	2019-06-04	Metals, Total	617 Country Dr.	Lead & Copper Monitoring
710 Heather St.	SP 1907248-4	2019-06-04	Metals, Total	710 Heather St.	Lead & Copper Monitoring
SS - 5A	SP 1900028-2	2019-01-02	Coliform	72 Catalina Dr.	Week 1 System Monitoring
	SP 1901997-2	2019-02-12	Coliform	72 Catalina Dr.	Week 2 System Monitoring
	SP 1903632-2	2019-03-19	Coliform	72 W. Catalina Dr.	Week 3 System Monitoring
	SP 1905378-2	2019-04-23	Coliform	72 W. Catalina Dr.	Week 4 System Monitoring
	SP 1907247-2	2019-06-04	Coliform	72 W. Catalina Dr.	Week 1 System Monitoring
	SP 1907247-2	2019-06-04	Field Test	72 W. Catalina Dr.	Week 1 System Monitoring

	SP 1908987-2	2019-07-09	Coliform	72 W. Catalina Dr.	Week 2 System Monitoring
	SP 1911035-2	2019-08-20	Coliform	72 W. Catalina Dr.	Week 3 System Monitoring
	SP 1912821-2	2019-09-24	Coliform	72 W. Catalina Dr.	Week 4 System Monitoring
	SP 1914990-2	2019-11-05	Coliform	72 W. Catalina Dr.	Week 1 System Monitoring
	SP 1916796-2	2019-12-10	Coliform	72 W. Catalina Dr.	Week 2 System Monitoring
80 Pathelen Ave	SP 1907248-16	2019-06-04	Metals, Total	80 Pathelen Ave.	Lead & Copper Monitoring
85 Almond AVE	SP 1900028-1	2019-01-02	Coliform	85 Almond Ave.	Week 1 System Monitoring
	SP 1901997-1	2019-02-12	Coliform	85 Almond Ave.	Week 2 System Monitoring
	SP 1903632-1	2019-03-19	Coliform	85 Almond Ave.	Week 3 System Monitoring
	SP 1905378-1	2019-04-23	Coliform	85 Almond Ave.	Week 4 System Monitoring
	SP 1907247-1	2019-06-04	Coliform	85 Almond Ave.	Week 1 System Monitoring
	SP 1907247-1	2019-06-04	Field Test	85 Almond Ave.	Week 1 System Monitoring
	SP 1908987-1	2019-07-09	Coliform	85 Almond Ave.	Week 2 System Monitoring
	SP 1911035-1	2019-08-20	Coliform	85 Almond Ave.	Week 3 System Monitoring
	SP 1912821-1	2019-09-24	Coliform	85 Almond Ave.	Week 4 System Monitoring
	SP 1914990-1	2019-11-05	Coliform	85 Almond Ave.	Week 1 System Monitoring
	SP 1916796-1	2019-12-10	Coliform	85 Almond Ave.	Week 2 System Monitoring
9148 Nye Rd	SP 1915322-1	2019-11-12	Coliform	9148 Nye Rd	Week 2 System Monitoring
	SP 1915322-1	2019-11-12	Field Test	9148 Nye Rd	Week 2 System Monitoring
SS - 14	SP 1900305-1	2019-01-08	Coliform	9148 Nye Rd Book 14	Week 2 System Monitoring
	SP 1900305-1	2019-01-08	Field Test	9148 Nye Rd Book 14	Week 2 System Monitoring
	SP 1902285-1	2019-02-19	Field Test	9148 Nye Rd Book 14	Week 3 System Monitoring
	SP 1902285-1	2019-02-19	Coliform	9148 Nye Rd Book 14	Week 3 System Monitoring
	SP 1904032-1	2019-03-26	Field Test	9148 Nye Rd Book 14	Week 4 System Monitoring
	SP 1904032-1	2019-03-26	Coliform	9148 Nye Rd Book 14	Week 4 System Monitoring
	SP 1906008-1	2019-05-07	Coliform	9148 Nye Rd Book 14	Week 1 System Monitoring
	SP 1906008-1	2019-05-07	Field Test	9148 Nye Rd Book 14	Week 1 System Monitoring
	SP 1907580-1	2019-06-11	Field Test	9148 Nye Rd Book 14	Week 2 System Monitoring
	SP 1907580-1	2019-06-11	Coliform	9148 Nye Rd Book 14	Week 2 System Monitoring
	SP 1909330-1	2019-07-16	Field Test	9148 Nye Rd Book 14	Week 3 System Monitoring
	SP 1909330-1	2019-07-16	Coliform	9148 Nye Rd Book 14	Week 3 System Monitoring
	SP 1911379-1	2019-08-27	Coliform	9148 Nye Rd Book 14	Week 4 System Monitoring
	SP 1911379-1	2019-08-27	Field Test	9148 Nye Rd Book 14	Week 4 System Monitoring
	SP 1913236-1	2019-10-01	Coliform	9148 Nye Rd Book 14	Week 1 System Monitoring
	SP 1913236-1	2019-10-01	Field Test	9148 Nye Rd Book 14	Week 1 System Monitoring
	SP 1917203-1	2019-12-17	Coliform	9148 Nye Rd Book 14	Week 3 System Monitoring
	SP 1917203-1	2019-12-17	Field Test	9148 Nye Rd Book 14	Week 3 System Monitoring
98 Wormwood St.	SP 1907248-7	2019-06-04	Metals, Total	98 Wormwood St.	Lead & Copper Monitoring
Baldwin Tank #1	SP 1901591-1	2019-02-05	Coliform	Baldwin Tank #1	Drinking Water Monitoring
Bald Tnk 2	SP 1900306-4	2019-01-08	Wet Chemistry	Baldwin Tank #2 - NO3 BLEND	Nitrate Monitoring
Barbara TracK #	SP 1914705-1	2019-10-29	Coliform	Barbara TracK #1	Drinking Water Monitoring
Well 01	SP 1302830-1	2013-03-19	Radio Chemistry	Well 01 (1989)	Well 01 - Water Quality
	SP 1305549-1	2013-06-04	Radio Chemistry	Well 01 (1989)	Well 01 - Water Quality
	SP 1700023-1	2017-01-03	Wet Chemistry	Well 01 (1989)	Nitrate Monitoring
	SP 1700023-1	2017-01-03	Sampling	Well 01 (1989)	Nitrate Monitoring
	SP 1700241-1	2017-01-09	Sampling	Well 01 (1989)	Nitrate Monitoring
	SP 1701637-1	2017-02-07	General Mineral	Well 01 (1989)	Well 01 - Water Quality
	SP 1701637-1	2017-02-07	Wet Chemistry	Well 01 (1989)	Well 01 - Water Quality
	SP 1701637-1	2017-02-07	Metals, Total	Well 01 (1989)	Well 01 - Water Quality
	SP 1702592-1	2017-02-28	General Mineral	Well 01 (1989)	Well 01 - Water Quality
	SP 1900306-1	2019-01-08	Wet Chemistry	Well 01 (1989)	Nitrate Monitoring
	SP 1901998-1	2019-02-12	Wet Chemistry	Well 01 (1989)	Nitrate Monitoring
	SP 1901996-1	2019-02-12	Wet Chemistry	Well 01 (1989)	Nitroto Monitoring
	SP 1903305-1	2019-03-12	Wet Chemistry	Well 01 (1989)	Nitrate Monitoring
	SP 1904692-1	2019-04-09	Wet Chemistry	Well 01 (1989)	
	SP 1906642-1	2019-05-21	Wet Chemistry	Well 01 (1989)	
	SP 1907246-1	2019-06-04	Wet Chemistry	Well 01 (1989)	
	SF 1908980-1	2019-07-09	Wet Chemistry	Well 01 (1989)	Nitrate Monitoring
	SF 1911380-1	2019-08-27	Wet Chemistry	Well 01 (1989)	Nitrate Monitoring
	5r 1912034-1	2019-09-10	wet Chemistry	wen 01 (1989)	INITIALE MONITOLING

	SP 1913235-1	2019-10-01	Wet Chemistry	Well 01 (1989)	Nitrate Monitoring
	SP 1914013-1	2019-10-15		Well 01 (1989)	VENTURA RIVER WATER DISTRICT
	SP 1915320-1	2019-11-12	Wet Chemistry	Well 01 (1989)	Nitrate Monitoring
	SP 1916396-1	2019-12-03	Wet Chemistry	Well 01 (1989)	Nitrate Monitoring
Well 02	SP 1102665-1	2011-03-15	Radio Chemistry	Well 02	Well 02 Title 22 Monitoring
	SP 1105600-1	2011-06-07	Radio Chemistry	Well 02	Well 02 Title 22 Monitoring
	SP 1405147-1	2014-05-06	General Mineral	Well 02	Well 02 - Water Quality
	SP 1405147-1	2014-05-06	Wet Chemistry	Well 02	Well 02 - Water Quality
	SP 1405147-1	2014-05-06	Metals, Total	Well 02	Well 02 - Water Quality
	SP 1406653-1	2014-06-10	Wet Chemistry	Well 02	Well 02 - Water Quality
Well 03	SP 1302833-1	2013-03-19	Radio Chemistry	Well 03 - Active	Well 03 - Radio Monitoring
	SP 1305552-1	2013-06-04	Radio Chemistry	Well 03 - Active	Well 03 - Radio Monitoring
	SP 1702589-1	2017-02-28	General Mineral	Well 03 - Active	Well 03 - Water Quality
	SP 1702589-1	2017-02-28	Wet Chemistry	Well 03 - Active	Well 03 - Water Quality
	SP 1702589-1	2017-02-28	Metals, Total	Well 03 - Active	Well 03 - Water Quality
	SP 1904031-1	2019-03-26	Wet Chemistry	Well 03 - Active	Well 03 - Water Quality
Well 04	SP 1702840-1	2017-03-07	General Mineral	Well 04 (2007)	Well 04 - Water Quality
	SP 1702840-1	2017-03-07	Wet Chemistry	Well 04 (2007)	Well 04 - Water Quality
	SP 1702840-1	2017-03-07	Metals, Total	Well 04 (2007)	Well 04 - Water Quality
	SP 1902985-1	2019-03-05	Radio Chemistry	Well 04 (2007)	Well 04 - Radio Monitoring
	SP 1902984-1	2019-03-05	Wet Chemistry	Well 04 (2007)	Well 04 - Water Quality
New WELL 07	SP 1611959-1	2016-10-07	Radio Chemistry	Well 07 (New)	Well 7 - Title 22
	SP 1611959-1	2016-10-07		Well 07 (New)	Well 7 - Title 22
	SP 1611959-1	2016-10-07	General Mineral	Well 07 (New)	Well 7 - Title 22
	SP 1611959-1	2016-10-07	Metals, Total	Well 07 (New)	Well 7 - Title 22
	SP 1611959-1	2016-10-07	Wet Chemistry	Well 07 (New)	Well 7 - Title 22
Well 07 New	SP 1900306-3	2019-01-08	Wet Chemistry	Well 07 (New)	Nitrate Monitoring
	SP 1901998-2	2019-02-12	Wet Chemistry	Well 07 (New)	Nitrate Monitoring
	SP 1903305-2	2019-03-12	Wet Chemistry	Well 07 (New)	Nitrate Monitoring
	SP 1904692-2	2019-04-09	Wet Chemistry	Well 07 (New)	Nitrate Monitoring
	SP 1906642-2	2019-05-21	Wet Chemistry	Well 07 (New)	Nitrate Monitoring
	SP 1907246-2	2019-06-04	Wet Chemistry	Well 07 (New)	Nitrate Monitoring
	SP 1908986-2	2019-07-09	Wet Chemistry	Well 07 (New)	Nitrate Monitoring
	SP 1911380-2	2019-08-27	Wet Chemistry	Well 07 (New)	Nitrate Monitoring
	SP 1912034-2	2019-09-10	Wet Chemistry	Well 07 (New)	Nitrate Monitoring
	SP 1913235-2	2019-10-01	Wet Chemistry	Well 07 (New)	Nitrate Monitoring
	SP 1915320-2	2019-11-12	Wet Chemistry	Well 07 (New)	Nitrate Monitoring
	SP 1916396-2	2019-12-03	Wet Chemistry	Well 07 (New)	Nitrate Monitoring