Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR) (to certify electronic delivery of the CCR, use the certification form on the State Water Board's website at http://www.swrcb.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml)

The water system named above hereby certifies that its Consumer Confidence Report was distributed on \$\frac{12-2021}{12-2021}\$ (date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water. Certified By:	Water System	Name:	VENTURA RI	IVER WATER DISTRICT	
Certified By: Name: Bert J. Rapp, P.E.	Water System	n Number:	CA5610022		
Phone Number: (805) 340-7263 Date: To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all iten that apply and fill-in where appropriate: CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used: "Good faith" efforts were used to reach non-bill paying customers. Those efforts included the following methods: X Posted the CCR on the internet at http:// VenturaRiverWD.com Mailed the CCR to postal patrons within the service area (attach zip codes used) Advertised the availability of the CCR in news media (attach a copy of press release) Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published) Posted the CCR in public places (attach a list of locations) Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools	5-12-2 certifies that t previously sub	the information of the informati	ate) to custome: ation contained the State Water e: ature:	ers (and appropriate notices of a lin the report is correct and coer Resources Control Board, Diversity Bert J. Rapp, P.E.	availability have been given). Further, the system onsistent with the compliance monitoring data
To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all iten that apply and fill-in where appropriate: CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used: "Good faith" efforts were used to reach non-bill paying customers. Those efforts included the following methods: X Posted the CCR on the internet at http:// VenturaRiverWD.com Mailed the CCR to postal patrons within the service area (attach zip codes used) Advertised the availability of the CCR in news media (attach a copy of press release) Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published) Posted the CCR in public places (attach a list of locations) Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools					Date
"Good faith" efforts were used to reach non-bill paying customers. Those efforts included the following methods: YenturaRiverWD.com					se complete the form below by checking all items
methods: X	CCR w	vas distribu	ited by mail or	other direct delivery methods.	Specify other direct delivery methods used:
Other (attach a list of other methods used)	metho	Posted the Mailed the Advertises Publication published Posted the Delivery such as a Delivery	e CCR on the included the availabilities of the CCR including the CCR including the CCR in public of multiple coping partments, bus to community of	nternet at http:// VenturaRical patrons within the service are ity of the CCR in news media (as in a local newspaper of general ling name of the newspaper and it places (attach a list of locationies of CCR to single bill addressinesses, and schools organizations (attach a list of or	ea (attach zip codes used) attach a copy of press release) a circulation (attach a copy of the d date published) ons) eses serving several persons,
For systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site at the following address: http://					
For investor-owned utilities: Delivered the CCR to the California Public Utilities Commission (This form is provided as a convenience and may be used to meet the certification requirement	For in				

of section 64483(c), California Code of Regulations.)

2022 Consumer Confidence Report

Water System Name: VENTURA RIVER WATER DISTRICT Report Date: March 2023

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2022.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: This Sources Well 01, Well 02, Well 03, Well 04, Well 06 and Well 7 are Groundwater. Please see the Drinking Water Source Assessment Information section located at the end of this report for more details.

Your water comes from 6 source(s): Well 01 (1989), Well 02, Well 03, Well 04 (2007), Well 06 and Well 07 (New) and from 2 treated location(s): Baldwin Tank #2 - NO3 BLEND and Baldwin Yard Soft Water Sample

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled Water District Board meetings held on the third Wednesday of the month at 3:00 p.m. at 409 Old Baldwin Road.

For more information about this report, or any questions relating to your drinking water, please call 8056463403 and ask for Bert Rapp or email Bert@VenturaRiverWD.com.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

NTU: Nephelometric Turbidity Units

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Tabl	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER									
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant			
Copper (mg/L)	(2022)	20	0.22	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			

	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant				
Sodium (mg/L)	(2014 - 2022)	52	38 - 68	none		Salt present in the water and is generally naturally occurring				
Hardness (mg/L)	(2014 - 2022)	406	378 - 433	none	nono	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring				

Table 3 - TREATED SAMPLING RESULTS FOR SODIUM AND HARDNESS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant			
Sodium (mg/L)	(2021)	231	n/a	none		Salt present in the water and is generally naturally occurring			
Hardness (mg/L)	(2021)	41.4	n/a	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring			

Table 4 - I	Table 4 - DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant				
Chromium (ug/L)	(2014 - 2022)	ND	ND - 14	50.0	n/a	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits				
Fluoride (mg/L)	(2014 - 2022)	0.3	ND - 0.5	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.				
Nitrate as N (mg/L)	(2014 - 2022)	2.3	ND - 3.9	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits				
Nitrate + Nitrite as N (mg/L)	(2014 - 2022)	1.7	0.4 - 4.1	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits				
Nitrite as N (mg/L)	(2014 - 2022)	ND	ND - 0.4	1	1	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits.				
Gross Alpha (pCi/L)	(2019 - 2022)	2.22	1.03 - 3.75	15	(0)	Erosion of natural deposits.				

Table 5 - TREA	Table 5 - TREATED DETECTION OF CONTAMINANTS WITH A <u>PRIMARY</u> DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant				
Copper (mg/L)	(2021)	0.12	n/a	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				
Fluoride (mg/L)	(2021)	0.4	n/a	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.				
Nitrate as N (mg/L)	(2019 - 2021)	2.7	2.0 - 3.3	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits				
Nitrate + Nitrite as N (mg/L)	(2021)	3.3	n/a	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits				

Table 6 - DETE	Table 6 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant				
Chloride (mg/L)	(2014 - 2022)	51	28 - 129	500	n/a	Runoff/leaching from natural deposits; seawater influence				
Iron (ug/L)	(2014 - 2022)	ND	ND - 100	300	n/a	Leaching from natural deposits; Industrial wastes				
Specific Conductance (umhos/cm)	(2014 - 2022)	992	888 - 1120	1600	n/a	Substances that form ions when in water; seawater influence				
Sulfate (mg/L)	(2014 - 2022)	218	113 - 272	500	n/a	Runoff/leaching from natural deposits; industrial wastes				
Total Dissolved Solids (mg/L)	(2014 - 2022)	660	590 - 720	1000	n/a	Runoff/leaching from natural deposits				
Turbidity (NTU)	(2014 - 2022)	0.3	ND - 1.0	5	n/a	Soil runoff				

Table 7 - TRE	Table 7 - TREATED DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant				
Chloride (mg/L)	(2021)	53	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence				
Copper (mg/L)	(2021)	0.12	n/a	1.0	1.0	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives				
Iron (ug/L)	(2021)	ND	n/a	300	n/a	Leaching from natural deposits; Industrial wastes				
Specific Conductance (umhos/cm)	(2021)	1190	n/a	1600	n/a	Substances that form ions when in water; seawater influence				
Sulfate (mg/L)	(2021)	241	n/a	500	n/a	Runoff/leaching from natural deposits; industrial wastes				
Total Dissolved Solids (mg/L)	(2021)	750	n/a	1000	n/a	Runoff/leaching from natural deposits				
Zinc (mg/L)	(2021)	0.06	n/a	5	n/a	Runoff/leaching from natural deposits				

Table 8 - DETECTION OF UNREGULATED CONTAMINANTS								
Chemical or Constituent (and reporting units)	Sample Date	Typical Sources of Contaminant						
Boron (mg/L)	(2014 - 2022)	0.6	0.1 - 0.8	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.			
Vanadium (ug/L)	(2014 - 2022)	ND	ND - 4	50	Vanadium exposures resulted in developmental and reproductive effects in rats.			

Table 9 - TREATED DETECTION OF UNREGULATED CONTAMINANTS									
Chemical or Constituent (and reporting units) Sample Date Average Level Detected Range of Detections Notification Level Typical Sources of Contaminant									
Boron (mg/L)	(2021)	0.6	n/a	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.				

	Table 10 - ADDITIONAL DETECTIONS									
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant					
Calcium (mg/L)	(2014 - 2022)	114	107 - 119	n/a	n/a					
Magnesium (mg/L)	(2014 - 2022)	30	27 - 33	n/a	n/a					
pH (units)	(2014 - 2022)	7.8	7.5 - 8.1	n/a	n/a					
Alkalinity (mg/L)	(2014 - 2022)	207	180 - 260	n/a	n/a					
Aggressiveness Index	(2014 - 2022)	12.6	12.3 - 12.9	n/a	n/a					
Langelier Index	(2014 - 2022)	0.7	0.4 - 1.0	n/a	n/a					

Table 11 - TREATED ADDITIONAL DETECTIONS									
Chemical or Constituent (and reporting units) Sample Date Average Level Detected Range of Detections Notification Level Contaminant Typical Sources of Contaminant									
Calcium (mg/L)	(2021)	10	n/a	n/a	n/a				
Magnesium (mg/L)	(2021)	4	n/a	n/a	n/a				
pH (units)	(2021)	8.79	n/a	n/a	n/a				

Alkalinity (mg/L)	(2021)	240	n/a	n/a	n/a
Aggressiveness Index	(2021)	12.6	n/a	n/a	n/a
Langelier Index	(2021)	0.7	n/a	n/a	n/a

Table	Table 12 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)	Violation	Typical Sources of Contaminant				
Total Trihalomethanes (TTHMs) (ug/L)	(2022)	49	5 - 69.0	80	n/a		By-product of drinking water disinfection				
Chlorine (mg/L)	(2022)	0.00	n/a	4.0	4.0	No	Drinking water disinfectant added for treatment.				
Haloacetic Acids (five) (ug/L)	(2022)	43.25	ND - 69	60	n/a		By-product of drinking water disinfection				

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Ventura River Water District* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL,MRDL,AL,TT, OR MONITORING AND REPORTING REQUIREMENT									
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language					
Haloacetic Acids (five)				Some people who drink water containing halocetic acids in excess of the MCL over many years may have an increased risk of getting cancer.					

2022 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

VRWD has six active groundwater wells as its groundwater sources. The active wells are Wells 1, 2, 3, 4, 6 and 7. There are no sewer lines or sewage disposal facilities located within 50 feet of well sites. The six well sites are fenced for security. The wells are located about 700 feet from an active stream (when water is flowing). VRWD conducted the drinking water source assessment of its active wells in May of 2020.

Well 03 - physical barrier effectiveness.

Possible Contaminating Activities (top ranked):

Septic systems

Well 06 - Moderate physical barrier effectiveness.

Possible Contaminating Activities (top ranked):

Sewer collection systems; animal grazing; low density septic systems, agricultural drainage; agricultural wells; NPDES/WDR permitted

discharges; storm drain discharge; storm water detention facility, roads; surface water

Well 07 (New) - Moderate physical barrier effectiveness.

Possible Contaminating Activities (top ranked):

Sewer collection systems; animal grazing; low density septic systems, agricultural drainage; agricultural wells; NPDES/WDR permitted $\,$

discharges; historic waste dumps/ landfills; storm drain discharge; storm

water detention facility, roads and freeways; surface water

Discussion of Vulnerability

There have been no contaminants detected in the water supply, however the wells are still considered vulnerable to activities located near the drinking water source.

Wells # 1, 2, 3, 4 & 7 are drinking water sources for the VENTURA RIVER WATER DISTRICT water system, they are located in the Upper Ventura River Groundwater Basin located in the Ojai Valley near Hwy 150 and the Ventura River. The Ventura River watershed covers 226 square miles and is the source for the Upper Ventura River Groundwater Basin. General land use is agricultural, urban, residential and National Forest.

The sources of contamination of Wells # 1, 2, 3, 4 & 7 that are of heightened concern are from onsite water treatment systems to the east of the wells, a sanitary sewer located 53-feet to 100-feet west of the wells and surface water in the Ventura River low flow channel located 1,000-feet west of the wells. Well # 1, 2, 3, 4 & 7 have been constructed with 50-foot deep sanitary seals and the first perforations vary from 72-feet to below the ground surface in Well #3 to 105-feet in Well #7. These design features will help protect against these three vulnerabilities.

Well #6: The most likely source of contamination of Well #6 is from onsite water treatment systems and an ephemeral drainage ditch located 180-feet north of the well. Well #6 has been constructed with a 120-foot deep sanitary seal and the first perforations are located 200-feet below the ground surface. These design features will help protect against these two vulnerabilities.

Acquiring Information

A copy of the complete assessment may be viewed at: SWRCB Division of Drinking Water District Office 1180 Eugenia Place Suite 200 Carpinteria, CA 930135

You may request a summary of the assessment be sent to you by contacting: Jeff Densmore
District Engineer
(805) 566-1326
jeff.densmore@cdph.ca.gov

A copy of the reports can also be downloaded at: http://venturariverwd.com/reports

CASITAS MUNICIPAL WATER DISTRICT, PWS CA5610024 Water Quality Summary, 2022 Data

Municipal Water District					water Quality Sum	iiiiai y, 2022	Dala		Municipal Water District *	
WATER CLARITY	MCL or [MRDL]			LAKE CASIT	AS TREATED		SAMPLE SOUR	CE & YEAR TESTED		
		PHG, (MCLG)	FILTER EFFLUEN	NT	RANGE	RANGE			SOURCE OF CONSTITUENT	
Direct Filtration	Treatment Technique (TT)						Filter Effluent			
	TT < 1	NA	Highest Value = 0	0.07	0.01 - 0.07		2022			
Filter Effluent Turbidity ^a (NTU)	95 % < 0.2	NA	1009	% of turbidity measu	rements were < 0.2 NTU 2022		2022	Soil run-off		
	95 % < 0.2	NA	100% = lov	vest monthly % of s	mples meeting turbidity limits			2022		
MICROBIOLOGICAL	(1.6)		DISTRIBUTIO		ON SYSTEM		Distribu	tion Custom		
MICROBIOLOGICAL	MCL or (TT)	(MCLG)	HIGHEST # POSITIVE S	AMPLES	NUMBER OF MONTHS IN	N VIOLATION	Distribution System			
Total Coliform Bacteria ^b	(More than 1 positive per month) ^b	(0)	1 / Month		0		2022		Naturally present in the environment	
E. Coli ^C	Revised Total Coliform Rule: E. coli MCL ^C	(0)	0 / Year		0	0		2022	Human and Animal Fecal Waste	
INORGANIC CHEMICALS	MCL	PHG	Lake Casitas Trea	ated	Mira Monte Well 1	Treated ^d	Lake Casitas Treated	Mira Monte		
INORGANIC CHEMICALS	MICE	PNG	AVERAGE	RANGE	AVERAGE	RANGE	Lake Casitas Treateu	Well Treated		
Barium (ppm)	1	2	0.11	NA	0.11	NA	2022	2022	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits	
Fluoride (ppm)	2	1	0.4	NA	0.4	NA	2022	2022	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories	
Nitrate as N (ppm)	10	10	ND	NA	0.7 ^d	0.5 - 0.8 ^d	2022	2022	Runoff and leaching from fertilizer use; leaching from tanks and sewage; erosion from natural deposits	
DISINFECTANT RESIDUALS AND	Running Annual Average (RAA)	PHG or [MRDLG]		DISTRIBUTI	ON SYSTEM		Distribution System			
DISINFECTION BY-PRODUCTS	MCL or [MRDL]	FIIG OF [WINDEG]	HIGHEST [RAA]/LOCATI	ONAL RAA	INDIVIDUAL SAMPLE	E RANGE	Distribu	ition system		
Chloramines as Cl ₂ (ppm)	[4.0]	[4.0]	[2.7] ^g		0.2 - 3.9		2022		Drinking water disinfectant added for treatment	
Trihalomethanes (ppb)	80	NA	52 ^g		38 - 68			2022	By-product of drinking water disinfection	
Haloacetic acids (ppb)	60	NA	38 ^g		9 - 45			2022	By-product of drinking water disinfection	
LEAD AND COPPER	Regulatory Action Level (RAL)	PHG	Number of Samples Collected	Homes	Level Detected at 90th	n percentile	Individ	dual Taps ^e		
f	15	0.2	30	above RAL	ND			2020	Internal corrosion of household plumbing systems; discharges from industrial manufacturers; erosion of natural products	
Lead (ppb) [†]				Ü	ND					
Copper (ppm) [†]	1.3	0.3	30	0	1.0			2020	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
Lead school (ppb)	15	0.2	Number of schools requesting	Number of schools requesting lead sampling = 4; Sample locations = 19; Locations above RAL = 0				2017	Internal corrosion of end-user plumbing systems; discharges from industrial manufacturers; erosion of natural products	
					SECONDARY AESTHI					
CONSTITUENTS	STATE MCL	PHG	Lake Casitas Treated			Mira Monte Well Treated ^d		r Tested	SOURCE OF CONSTITUENT	
CONSTITUENTS	51711211132		AVERAGE	RANGE	AVERAGE	RANGE	Lake Treated	MMW Treated	333102 31 33113211	

	SECUNDARY RESTRETIC STANDARDS									
CONSTITUENTS STATE MCL	STATE MCI	PHG	Lake Casitas Treated		Mira Monte Well Treated ^d		Year Tested		SOURCE OF CONSTITUENT	
	rno	AVERAGE	RANGE	AVERAGE	RANGE	Lake Treated	MMW Treated	SOURCE OF CONSTITUENT		
Apparent Color (color units)	15	NA	ND	NA	5	NA	2022	2022	Naturally-occurring organic materials	
Total Dissolved Solids (ppm)	1000	NA	470	NA	450	NA	2022	2022	Run-off / leaching from natural deposits	
Specific Conductance (μS/cm)	1600	NA	706	NA	725	NA	2022	2022	Substances that form ions in water; seawater influence	
Chloride (ppm)	500	NA	23	NA	26	NA	2022	2022	Run-off/leaching from natural deposits; seawater influence	
Sulfate (ppm)	500	NA	199	NA	189	NA	2022	2022	Run-off /leaching from natural deposits; industrial wastes	
ADDITIONAL CONSTITUTATE										

ADDITIONAL CONSTITUENTS									
ADDITIONAL CONSTITUENTS SECONDARY MCL	SECONDARY MCI	PHG	Lake Casitas Tre	Lake Casitas Treated		Mira Monte Well Treated ^d		r Tested	SOURCE OF CONSTITUENT
	SECONDART WEE	(NL)	AVERAGE	RANGE	AVERAGE	RANGE	Lake Treated	MMW Treated	SOURCE OF CONSTITUENT
Alkalinity - Total as CaCO ₃ (ppm)	NA	NA	140	NA	150	NA	2022	2022	A measure of the capacity to neutralize acid
Boron (ppb)	NA	(1000)	200	NA	200	NA	2022	2022	A naturally-occurring element
Calcium (ppm)	NA	NA	69	NA	68	NA	2022	2022	A naturally-occurring element
Corrosivity (Langlier Index) ^f	Noncorrosive (US EPA)	NA	0.10	NA	0.05	NA	2022	2022	Indicator of corrosivity. Water with a positive Langlier Index can be considered as non-corrosive
Hardness - Total as CaCO ₃ (ppm)	NA	NA	291 (17.0 gpg)	NA	285 (16.6 gpg)	NA	2022	2022	"Hardness" is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring
Magnesium (ppm)	NA	NA	29	NA	28	NA	2022	2022	A naturally-occurring element
pH (pH standard units)	6.5-8.5 (US EPA)	NA	7.6	NA	7.5	NA	2022	2022	A measure of acidity or alkalinity
Potassium (ppm)	NA	NA	4	NA	4	NA	2022	2022	A naturally-occurring element
Sodium (ppm)	NA	NA	35	NA	34	NA	2022	2022	"Sodium" refers to the salt present in the water and is generally naturally occurring.
Vanadium (ppb)	NA	(50)	3	NA	3	NA	2022	2022	A naturally-occurring element

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

mum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (US EPA).

Asximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that the addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. tunning Annual Average (RAA): Some MCL's are determined based on the running annual average which is calculated by averaging all sample results within the previous four quarters. Locational running annual average includes results averaged over the previous four quarters for a specific sample site.

otification Level (NL): Health based advisory levels established by the State Board for chemicals in drinking water that lack MCLs.

rimary Drinking Water Standards (PDWS): MCLs, MRDLs and treatment techniques (TT) for contaminants that affect health, along with their monitoring and reporting requirements.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

tegulatory Action Level (RAL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

MMW - Mira Monte Well

ND - None Detected at or above the limits of detection for reporting purposes NL - Notification Level

NS - No Sample

NTU - Nephelometric Turbidity Units (a measure of turbidity)

ppm - Parts per million, or milligrams per liter (mg/L)

ppb - Parts per billion, or micrograms per liter (µg/L)

μS/cm - Micro Siemens per Centimeter (a measure of specific conductance)

gpg - Grains per gallon, an alternative unit used to measure hardness

US EPA - United States Environmental Protection Agency

Water Quality Table Footnotes:

a) Turbidity is a measure of the cloudiness of water and is a good measure of water quality and filtration performance; 100 % of the samples tested for turbidity were below the required TT level of 0.2 NTU and 100% is the lowest monthly percentage of samples meeting the turbidity limits.

b) For systems collecting fewer than 40 samples per month: Two or more total-coliform positive monthiny samples is a treatment technique trigger. During 2022 Casitas collected 159 routine and repeat distribution system samples for total coliform bacteria testing under the Revised Total Coliform Rule. Total coliform bacteria was detected in one routine sample, all repeat samples were absent for total coliform.

; Based on the Revised Total Coliform Rule, an E-Coli MCL violation occurs when 1) a routine and associated repeat sample(s) are total coliform-positive and either is E. coli-positive routine sample, or 3) the system fails to analyze a total coliform-positive repeat sample for E. coli. Casitas did not have any E. coli MCL violations during 2022.

d) Mira Monte Well water receives blending treatment with lake Casitas Treated water and when operated, blended water is sampled weekly for nitrates with the resulting nitrate level averaging 0.7 ppm as nitrogen in 2022. All other sample results are from samples collected of the blended water. e) The State monitoring requirements for some contaminants is less than once per year because the concentrations of these contaminants do not change frequently. These data are from the most recent sampling, and although representative, are more than one year old.

f) Casitas has implemented a corrosion control plan by adding a small amount of phosphate to the water to lower corrosivity and reduce copper levels.

g) Highest running annual average and locational running annual averages are used to calculate the MCL / MRDL and include sample results from a previous reporting period, whereas range only includes individual sample results from 2022.